Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.22.525079

ABSTRACT

The SARS-CoV-2 Omicron variant has continued to evolve. XBB is a recombinant between two BA.2 sublineages, XBB.1 includes the G252V mutation, and XBB.1.5 includes the G252V and F486P mutations. XBB.1.5 has rapidly increased in frequency and has become the dominant virus in New England. The bivalent mRNA vaccine boosters have been shown to increase neutralizing antibody (NAb) titers to multiple variants, but the durability of these responses remains to be determined. We assessed humoral and cellular immune responses in 30 participants who received the bivalent mRNA boosters and performed assays at baseline prior to boosting, at week 3 after boosting, and at month 3 after boosting. Our data demonstrate that XBB.1.5 substantially escapes NAb responses but not T cell responses after bivalent mRNA boosting. NAb titers to XBB.1 and XBB.1.5 were similar, suggesting that the F486P mutation confers greater transmissibility but not increased immune escape. By month 3, NAb titers to XBB.1 and XBB.1.5 declined essentially to baseline levels prior to boosting, while NAb titers to other variants declined less strikingly.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.24.513619

ABSTRACT

Waning immunity following mRNA vaccination and the emergence of SARS-CoV-2 variants has led to reduced mRNA vaccine efficacy against both symptomatic infection and severe disease. Bivalent mRNA boosters expressing the Omicron BA.5 and ancestral WA1/2020 Spike proteins have been developed and approved, because BA.5 is currently the dominant SARS-CoV-2 variant and substantially evades neutralizing antibodies (NAbs). Our data show that BA.5 NAb titers were comparable following monovalent and bivalent mRNA boosters.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.16.22275151

ABSTRACT

Multiple lineages of the SARS-CoV-2 Omicron variant (B.1.1.529) have emerged, and BA.1 and BA.2 have demonstrated substantial escape from neutralizing antibodies (NAbs). BA.2.12.1 has now become dominant in the United States, and BA.4 and BA.5 have become dominant in South Africa. Our data show that BA.2.12.1 and BA.4/BA.5 substantially escape NAbs induced by both vaccination and infection. Moreover, BA.4/BA.5 NAb titers, and to lesser extent BA.2.12.1 NAb titers, were lower than BA.1 and BA.2 NAb titers, suggesting that the SARS-CoV-2 Omicron variant has continued to evolve with increasing neutralization escape. These findings have important public health implications and provide immunologic context for the current surges with BA.2.12.1 and BA.4/BA.5 in populations with high rates of vaccination and BA.1/BA.2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL